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ABSTRACT 
 

A dominating set S  of a graph G  is a global total dominating set 

if S  is both a global dominating set and a total dominating set. 

The global total domination number  gt G  is the minimum 

cardinality of a global total dominating set of G . In this paper we 

discuss some results on global total domination number. 
 
Keywords: global domination, total domination, global total 
domination, global total domination number. 
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1.   INTRODUCTION 
 

All graphs under our consideration are finite, undirected, without loops, multiple 

edges and isolated vertices. Terms not defined here are used in the sense of Harary 

[1]. Let ( , )G V E  be a graph. A vertex in a graph G  dominates itself and its 

neighbors. A set of vertices S  in a graph G  is a dominating set (DS), if each vertex of 

G  is dominated by some vertices of S . The domination number  G  of G  is the 

minimum cardinality of a dominating set of G . The theory of domination is outlined in 

two books by Haynes, Hedetniemi and Slater [2,3].  

 

A total dominating set (TDS) of a graph G  with no isolated vertex is a set S  

of vertices of G  such that every vertex is adjacent to a vertex in S . Every graph 

without isolated vertices has a TDS, since  S V G  is such a set. The total 
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domination number  t G  of G  is the minimum cardinality of a TDS. Total 

domination in graphs was introduced by Cockayne, Dawes, Hedetniemi and Slater 

[4]. 

 

A global dominating set (GDS) of  G  is a set of vertices that dominates both 

G  and the complement graph G . The global domination number  g G  of G  is the 

minimum cardinality of a GDS. Global domination was introduced by 

Sampathkumar1[5]. 

 

A total global dominating set (TGDS) of  G  is a total dominating set of both 

G  and G . The total global domination number  tg G  of G  is the minimum 

cardinality of a TGDS. For this we refer the reader to  [6]. 

 

We define the new concept namely Global Total Dominating Set as follows: 

 

A global total dominating set (GTDS) of a graph G  is a set S  of vertices of 

G  such that S  is both GDS and TDS. The global total domination number  gt G  of 

G  is the minimum cardinality of a GTDS.  

 

We note that  G  and  g G  are defined for any G .   tg G  is only 

defined for G  with   1G   and   1G  .  t G  and  gt G  are only defined for 

G  with   1G  , where  G  is the minimum degree of G . 

 

Theorem1.1   For any graph G  of order n , ngt 2 . 

Proof:   A global total dominating set needs at least two vertices and so 2gt . The 

set of all vertices of G  is clearly a GTDS of G  so that ngt  .Thus ngt 2 . 

 

Remark 1.2   The bounds in Theorem1.1 are sharp. For the complete graph 

    .,2 nKnK ngtn    For the complete bipartite graph   .2, ,, nmgtnm KK   Thus 

 2nKn  has the largest possible GTD number n  and the complete bipartite graphs 

have the smallest global total domination number.  

 

Theorem 1.3  For any positive integers ,m n ,  , 2gt m nK  . 

 

Proof:  Let G  be a complete bipartite graph with partitions 1V  and 2V . Let 1u V  

and 2v V  . Since G  is a bipartite graph, each vertex in one partition can dominate 

all vertices in the other partition. But in G  it will dominate all vertices in it's own 

partition. Hence it is enough to have two vertices to dominate all vertices in both G  

and G . Thus  ,S u v  is both global and total dominating set in G . 

Hence  , 2gt m nK  . 
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2. Bounds for GTDS in graphs 

Theorem 2.1    Let  G  be a connected graph, then  
2 1

gt

n
G

 
    

.    

 

Proof:  Let  S V G  be a GTDS in G . Every vertex in S  dominates at most 

  1G   vertices of   V G S  and dominates at most  G  vertices in S . 

 Hence  1S S n    .  

                   2 1S n   . 

                  
2 1

n
S 


. 

Since, S is an arbitrary global total dominating set,    
2 1

gt

n
G

 
    

. 

Note:  If G  is a complete bipartite graph with bipartition X , Y  and X Y , then  

 
2 1

gt

n
G

 
    

. So the above bound is sharp. 

 

Theorem 2.2    Let  G  be a connected graph, then    nGgt .    

Proof:   Let S  be any gt -set of G. Every vertex in S  dominates at least one vertex 

in S  and at least one vertex in S  dominates at least   vertices in  V G S .  

Hence   nS   . 

  nS . 

Since, S is an arbitrary global total dominating set ,    nGgt .                 

 Theorem 2.3  Let G  be a graph of order 3n  . Then   1gt G n    if and only if 

nG K e  . 

Proof: We first prove the sufficiency part. Let  nG K e   where  ne uv E K  . 

So  uv E G  and hence  uv E G  and also G  contains 2n   isolated vertices. 

Hence every GTDS of  G must contain all vertices of     ,V G u v   and at least one 

of  u  and v . Thus    1gt G n                                             --------------------(1)  

Since     V G u  is a GTDS of  G , it follows that   1gt G n    -----------------(2) 

Thus by (1) and (2)    1gt G n   . 

Now we prove necessity.  

Assume   1gt G n   . To prove nG K e  .  We know that  gt nK n  .We proved 

that   1gt nK e n    . Since   1gt G n   , nG K e  . 

                                 

Theorem 2.4  Let  G  be a graph with no isolated vertices. Then 
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2mKorKGnG ngt  . 

Proof: The proof of sufficiency is obvious.  

To prove the necessity. Assume that  gt G n  .  

Case 1 : G  is connected.  

Suppose 3,  nKG n . Then there exists a vertex Vv such that   1deg  nv . 

Then  vV  is a GTDS, which is a contradiction. Thus  nKG  . 

Case 2 : G  is disconnected. 

Suppose there exists Vv  such that   2deg v . 

Then  vV  is a GTDS, which is a contradiction. 

Therefore   Vvv  1deg . Thus 2mKG  . 

 

Definition: 2.5  The greatest distance between any two vertices of a connected 

graph G  is called the diameter of G  and is denoted by  d G .   

Theorem 2.6 Let G  be a graph with   1 2d G  , then     1gt G G   . 

Proof:  Let x  be a vertex of minimum degree in G . Since  1 2d G  , then 

 N x  is a dominating set for G . Now    x N x  is a dominating set for G  and 

also a total dominating set for G . Thus we have    S x N x   is a global total 

dominating set for G  and   1S G  . 

Hence     1gt G G   .         

Remark 2.7  If v  is a support vertex of a graph G , then v  is in every  gt G -set. 

Definition:2.8 The degree of a vertex v  denoted by  Gd v  is the number of edges 

incident with the vertex v . A leaf of a tree T  is a vertex of degree one, while a 

support vertex of T  is a vertex adjacent to a leaf.  

  

Theorem 2.9  If  T  is a tree of order 3n  , then   1gt T n l    . Moreover the 

equality holds if and only if  T is a star. 

 

Proof: Let  T  be a tree of order 3n  . Let S  be any gt -set. By Remark 2.7, 

S contains every support vertices of T . Since T  has at most n l  support vertices, 

then 1S n l   . 

     For the moreover part, if T  is a star then by Theorem 1.3,   2 1gt T n l     . 

Conversely let T  be a tree with   1gt T n l    . We show that T  is a star. 

Let S be a  gt T -set with size 1S n l    and let v  be a vertex of  T  with 

 deg v n l  . If v S  then   0Gd v   which is impossible, so v S . Since 

1S n l   , each vertex of  N v  is an end vertex. Hence T  is a star. 

 

Theorem 2.10  Let G  be a graph of order n  and size m ,   1G  .  
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Then  
2

gt

n
G m   . 

Proof: Let S  be any gt -set of G . Consider A V S   and B S . Let 1n  and 

2n  be the order of A  and B  respectively. Also 1m  and 2m  be the size of A  and B  

respectively. 

Thus     1

1 1
deg

2 2
A gt

v V S

m v n G
 

    and                    

   2

1 1
deg

2 2
B gt

v S

m v G


  . 

Let 3m  denote the number of edges between S  and V S . Since S  is a gt -set, 

and so S  is a total dominating set every vertex is adjacent to at least one vertex in 

S . Thus  3 gtm G . 

Hence  1 2 3m m m m    

       
1 1

2 2
gt gt gtn G G G      . 

 
   

1 1

2 2
gt gtm n G G    

. 

Which implies that  
2

gt

n
G m   . 

3.  Lotus Inside Circle: [7] 

              The graph lotus inside circle is denoted by nLIC , 3n   and is defined as 

follows. Let nS  be the star graph with vertices 0 1, ,..., nb b b  whose center is 0b . Let nC  

be the cycle of length n  whose vertices are 1 2, ,... na a a . We join 1ia   with 1&i ib b   for 

each 1i   and join 1a  with 1b  & nb . 

Example 3.1:  
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Theorem 3.2  For 4n  ,   1
2

gt n

n
LIC

 
  
 

. 

Proof:  

 

Case 1: n  is even. Consider the set  0 1 3 5 3 1, , , ,..., ,n nS b b b b b b  . It is easy to see 

that S  is a total dominating set for nLIC  and also 0b  and 1b  dominates 1 2, ,..., na a a  

and 2 3, ,..., nb b b  respectively in nLIC  and hence S  is a GTDS  for nLIC .        

Thus   1
2

gt n

n
LIC S

 
   

 
.        

Let  ,
2

n

n
T V LIC T

 
   

 
 and T  be GTDS for nLIC .                                                                          

We split into three cases. 

 

Subcase 1.1: 

          Suppose 0b T  and 1
2

n 
 

 
 remained vertices of T  be the vertices of star 

graph. Due to the structure of the graph nLIC , 0b  dominates 1 2, ,..., nb b b . In this 

case 0T b  must dominate 1 2, ,..., na a a . But 0T b  dominate at most 2n   vertices 

of the cycle nC . So at least two vertices of nC  that any vertices of T  cannot 

dominate them, which is a contradiction. 

 

Subcase 1.2: 

          Let 0 1,b b T  and 2
2

n 
 

 
 remained vertices of T  be the vertices of cycle nC . 

Due to the structure of the graph nLIC , 0b  dominates 1 2, ,..., nb b b  and 1b  dominates 

1a  and na . In this case T  must dominate 2n   vertices of the cycle nC  with 

2
2

n 
 

 
 vertices of nC . Here at least two vertices of cycle nC  are not dominated by 

any vertices of T which is a contradiction. 

 

Subcase 1.3: 

          Let 0b T , without loss of generality suppose that 1 1,b a T . Then 1b  

dominates itself and the vertices 0 1, & nb a a  and 1a  dominates itself and the vertices 

1 2 2, , , nb b a a . So the remained 2
2

n 
 

 
 vertices of T  dominates all other vertices in  
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 nV LIC . Since at least 
2

n 
 
 

 of vertices in   nV LIC  are not dominated by vertices 

in T . Thus we have a contradiction. 

 

Hence   1
2

gt n

n
LIC

 
  
 

. 

This implies that   1
2

gt n

n
LIC

 
  
 

. 

 

Case 2 : n  is odd. 

It is easy to verify that the set of vertices  1 0 1 3 2, , ,..., ,n nS b b b b b  is both total and 

global dominating set for nLIC  and hence 1S  is GTDS for nLIC . Therefore 

  1 1
2

gt n

n
LIC S

 
   

 
. So it is enough to prove that   1

2
gt n

n
LIC

 
  
 

. Let 

 nT V LIC , 
2

n
T

 
  
 

 and T  be GTDS of nLIC . 

We split into three cases. 

 

Subcase 2.1 

      Let 0b T and 1
2

n 
 

 
 remained vertices of  T  be the vertices of star graph nS . 

Due to the structure of the graph nLIC , 0b  dominates 1 2, ,..., nb b b . So T  must 

dominate all vertices of nC . 0T b  dominate at most 1n   vertices of cycle nC . So 

at least one vertex of nC  that any vertices of  T  cannot dominate them, which is a 

contradiction. 

 

 

Subcase2. 2 

     Let 0 1,b b T  and 2
2

n 
 

 
 remained vertices of  T  be the vertices of cycle nC . 

Due to the structure of the graph nLIC , 0b  dominates 1 2, ,..., nb b b  and 1b  dominates 

1a  and na . So the remaining 2n   vertices in nC  are must dominated by 2
2

n 
 

 
 

vertices of  T . Here at least one vertex of nC  is not dominated by any vertex of  T , 

which is a contradiction. 

 

Subcase 2.3 

      Let 0b T , without loss of generality suppose that 1 1,b a T . Then 1b  dominates 

itself and the vertices 0 1, & nb a a  and 1a  dominates itself and the vertices  

1 2 2, , , nb b a a . In this case, the remaining 2
2

n 
 

 
 vertices of  T  must dominates all 
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other vertices in   nV LIC . Here at least 3
2

n 
 

 
 vertices in  nV LIC  are not 

dominated by vertices in T . Thus we have a contradiction. 

 

Hence   1
2

gt n

n
LIC

 
  
 

. 

This implies that   1
2

gt n

n
LIC

 
  
 

.  
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